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COMPRESSIBLE FLOW THROUGH REED VALVES

FOR PULSE JET ENGINES

I, HINGED REED VALVES

Paul, Torda

I. P. Villalba

J. H. Brick

INTRODUCTION

A survey of the literature on pulse jet engines has shown some of the disadvantages of the

reed type intake valves, such as restricted intake area, short reed endurance, etc, In meeting W

the problems indicated by research, investigators have incrcased the int&ke area by using coni-

cal, instead of flat reed valve banks. Some increase in reed life was also achieved by using

neoprene coated and laminated reeds as well as neoprene coated valve seats.

In existing pulse jets the reeds move with undulating motion, i.e., they oscillate about

their momentarily bent shapes. This mans that for such .reeds, as compared with reeds which

form smooth nozzles throughout their motion, the inflow is restricted. Calculations carried

out, but not presented here, have shown that for certain valve geometry and mass distribution

this undulating motion of the reeds occurs. A basic postulate in the present analysis is that

the reeds always form smooth nozzles throughout their motion. By this action of the reeds the

inflow efficiency as well as the reed endurance increases. The prevention of oscillations about

momentarily bent shapes of th- reeds reduces their bending stresses. The bending stresses will
'p..

be further reduced if the reeds are hinged instead of being clamped, as is custmanry, since the

support constraints are reduced.

Numerous calculations have been carried out in order to determine the simplest method use-

ful for numerical work. It is thought that the presented closed form solution of the non-linear

differential equations fulfills this requireme•it. -

The numerical examples are included as illustrations only. Although these numerical exam-

pies are believed to be correct, they do not include sufficient variation of the parameters in-

volved to represent more than an illustration of the trend rather than complete data for purpose

of design. The basic dimensions for the numerical examples were chosen to approximate those of

the McDonnell 8-inch pulse jet engine.

This analysis shows that when slender valves and tapered mass distribution are combined

non-undulating motion of the reeds occurs. Thus smooth inflow results and adverse transverse Ha

accelerations of the reeds are avoided.
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Do present report deals with the analysis of air inflow between hinged reeds. The case

air inflow between clamped reeds is treated in a separate report,

AIR INFLOW ANALYSIS

In the present analysis the flow upstream of the valves was assumed parallel to the valve

axis. This is equivalent to having a relatively short cowl ahead of a valve ban", the cowl

diameter being large compared with the width of the individual valves, i.e., the valve bank

being composed of a large number of valves. Isentropic change of state of the inf lowing air

was assumed, and a quasi-one-dimensional approach chosen. This latter approach takes into

account the time variation of the flow area between the valves as well as the space and time

variations of the flow velocity and pressure. Figure 1, page 28. '.%

The interaction between the inflow conditions, the valves, and the combustion chamber

pressure is taken into account by satisfying the Euler dvnamic equations, the continuity

equation, the equation of change of state, and the equation of forced recd vibration. No

theoretical or experimental data were available regarding the variation of the combustion

chamber pressure behind the reeds. Therefore this pressure variation was calculated as a re-

sult of the analysis. The application of the results for design purposes is discussed briefly

in section B, page 7.

The transition between inflow and combustion chamber conditions is taken into account by

prescribing a physically probable velocity variation at an arbitrary time and an arbitrary

cross section of the reed nozzle. This velocity variation can be modified easily to fit actual

transition conditions as they are brought into evidence by better understanding of the aero-

thermodynamic process in the combustion chamber. Such a change would mooify the numerical

results but would not affect the analysis.

The requirement that the reeds form smooth nozzles throughout their motion influenced

the choice of the space function, X(x), of the analysis. The starting time, t=O, was chosen

at a time when the reeds alreaay are open slightly. This allowed the use of an exponential

function for X(X). If the starting time is to be chosen wnen the valves are closed, an addi-"

tive function has to be used together with the exponential function. The additive function

would complicate the expressions used for numerical work. Since the flow is well behaved

during the very short tine, At, which elapses while the valves open slightly, and its analy-

sis would not yield significant results, the additive function could be left out of the an-

alysis and the starting time defined as explained above. However, At, as well as the amount

of slight opening, can be decreased arbitrarily witnout adverse effects on the results. The

use of a single term for X(x) greatly simplifies the numerical calculations.

2
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1his analysis considers non-steady, compressible flow between hinged reed valves during

the period of opening. (Ince fully open, the valves will remain in this position until the

pressure on the valve surface on the combustion chamber side exceeds that on the -.-- ow side,

at which tint the valves will start to close. The numerical work could not be extended to

inmlude the closing period of the valves for lack of expe' nental as well as of analytical

data on the pressure variation directly behind the valves,

For the convenience of the reader a list of symbols is presented ahead of the Appendix L"?

on page 16. The nunber designations of the equations are identical in the body of the report

and in the Appendix. Thus equations missing in the report indicate intermediate steps which

are given in the appendix.

(A) BASIC EQUATIONS DEFINING THE FLOW

The equation of continuity is:

a(pA) . CoupA)

-at Bx

"The Euler dynamic equation of motion is:

BU ýu 1 ap --/
+ u- + 1 0 (a.3)

ht ax p ax

The equation of isentropic change of state is:

P =( ) R ( a .5 )

A new variable, P R(x,t), is defined as the product of the density, p p(x,t),

and the cross sectional area between a pair of reeds, A = A(x,t), or formally

B B(x,ti p(x,t) A'-x,t) (a.9)

The continuity equation (a.1) then can be integrated to yield

Ut dx] (b.1)

where K,(t), an arbitrary time function, arises in the integration.

Using the equation of isentropic change of state (a. 5 ) and the expression for the ve-

locity, U, (b.1) and its derivatives, the equation of motion (a.3) can be written in the

form

3
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-dx -CiBOV + 2 , t d +
Tl X B bt 'a(t - dx (b. 31

1 12
* ,ax :::

Differentiation of eq. (b.3) with respect to X gives rise to a quadratic equation, the roots

of which can be expressed as

[1 (t) - -dx -D (b.6)
h 2D,

where DU, D2 and D, are functions of B and p, and are defined in Appendix - I, eq. (b.5).

The non-linear integro-differential equation, as given by (b,6), can be integrated in

closed form if it is postulated that

(1) in the expression under the square root sign (a function of X and t) the varia-

bles are separable; and

(2) that in the expression (a.9) the variables are also separable. The use of the

mthod of separation of variables restricts the domain of solutions. It is

known, however, that the solutions thus obtained are sufficiently general.

Part (1) of the postulate reduces eq. (b.6) to two simultaneous equations and together

with part (2) separates the variables in both of them. Thus we have the following:

From (1):

[-(1(t) dX] -D2± V', -(tt (b.7a)

and

D - 4D1D•D = 0 ( t) (b.7b)

and from (2):

B(x,t) = X(xT.t) (b.9)

Differentiating eq. (b.7a) with respect to X and separating the variables in eqs. (b.7a

and b.%'b), the following equations are obtained

Kfv• dt
T pe (b.14)

and

4
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rY [2(dX X~ d' 4d dsX
- L X -X'2 d I + C_-6 + X' '

dx dx dx dx dx dx2 dxJ

X dX d'X + dX'' d'X /xd'X (d'15)

dx dx' Ld~x dx' kdx'

Equation Wb.15) is a non-linear total differential equation in two undetermined functions

of X, namely XWx) and V(x). Since the combination of the two functions must satisfy eq. (bS),

it is valid to choose one of the functions and determine the other from the differential e-

quation.

Two different functions were chosen for X(x) and the corresponding expressions fur 9W) .

were determined.

For case I

cx
X Cx) be (c.1)

a W(x) = a (c.4)

and for case II

Xi~x)-- {a,(1-a. (x-a)} 4a -6 (c.2)

e9 21 {a,( 1 -a. ) (x -a.)} ' (c.16)

In the following the analysis is carried through for the exponential case (I) Geq. c.1)

but for case (Ii) (eq. c.2) only the final results are given, since the procedure is identi-

cal in both cases.

Introducing the expressions for X(x) and V(x), as given by'•c.1) and (c.4), into e-

quation (b.7b) and integrating, the following expression is obtained for the density .'
(o-o(x,t)).

,-4T /dT -7I / I(c.7) :,

1 dd-t 2d Y" t ) ,-,+
--- x- -le e- e K, t)

E7C {7 T

where K2 (. and K3(t) are arbitrary time functions, arising in the integrations.

Introducing the expressions for U(X,t), ;(X,t+ and X(x), as given by equations (c.9,

ALI5m
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b-9 and c.1 reeptectively), the Euler equation (a.3), after integration, yields a second ex-

prsinfor the density p =p(x,t)

I 2 -I

P -+ LC (c.10)
v-i' flR21~ T DCI C C1

Exwpresions (c.7) and (c.10) imist ;m identical for all values of the independent varis-

bies (X and t). Comparison of powers of X yields relationships hetween the time functions

*(see Appendix). The general expressions for the density, area and velocity distrii~ution

during inflow are (c. 13)

zt-l- [r 1 -a x T~~~x~'I
- _- _ - I( ,- 2C

PI - eIe;

B X(X)Tt)-

A, b' p_ _ e1 (c.14)

I2 where pis given by equation (c.13), an

II

(aI1a xa a (c.25)

sigthe funct xpesion& for the) asgiensiny case eoiyae fondtob

P Xi as (-a li Xxa5 }&1(c2

I'

3; [3t3 2
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B X(x)T(t) 2a {-3%(x-as,)) (c.19)

P P

'bhere pl is given by eq. (c.18), and
Y

U a,(x-a -2X CX-as (c.20)U -1I21xaI 2ip

The results, obtained so far, have to be adapted to the particular problem at hand.

Wov SOLUTION OF THE BOUND•RAY VALUE PROBLEM

The expressions for density, velocity, and area distribution of the flow, as given a-
bove for cases I and II, represent solutiorm, of the basic equations (a.1), (a.3), and (a.5).

The arbitrary constants and ti..e functions in these express..ons must be determined for the

boundary value prob1em under consideration. The undetermined time function, 'r(t), which ap-

pears in these expressions, determines the pressure, velocity, and area variations through-

out the air inflow.

This time function, (,(t),should be derived from the transition condition between the

air inflow and the aero-thermodynmic process in the combustion chamber. It was not poss.
ble to do this, since, as was stated in the introduction, insufficient data were available.
Itwas necessary, therefore, to select a function, the use of which would re! 1. in a physi-

cally probable solution of the problem.

The function T(t) was selected by prescribing a time variation of the inflow velocity
at some arbitrary position along the x axis. Two functions were used for t(t) bounding the
entire domain of possible variations. For design purposes numerical analyses sh,uld be

carried out for many other examples within this domain, similar to those presented. The de-

signer can then select the proper valve parameters by comparison of the results of these nu-

merical examples with the particular combustion chamber pressure variation of interest to

him.

For the inflow between hinged reed valves, the initial and boundary conditions to be

satisfied may be stated as follows:

1. At the inlet section (x=J) the area of inflow must be constant for any time (t)..] This can be expressed

"-' "for x C'

7
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A(O,t) constant A w A (d.la)
ot 0,0i 2. At the start of the inflow (t=O) the density at the inlet section is very close to

stagnation density, so that with sufficient numerical accuracy p(Oo)ýps. From

equation (a.9), therefore

forx-0 and t 0

"B (0,0) = psAo, (d.lb)

3. For the start of the inflow (t=0) and the exit section (x=h) there is for zero area

a singularity point in the B function, as has been explained earlier in the beginning

of AM INFLOW ANALYSIS, page 2. This point has been excluded from the analysis. It

should be pointed out, however, that the area at this point and time may be made arbi-

trsrily small without detriment to the condition on the density. The density at this

point and time is slightly less than the density at the inlet section, so that a nearly

constant density distribution along x results for t'O. The amount of gap between the

valves at the exit section can be so chosen as to give this desired density distribu-

bion. This condition can be expressed

fort =0 and x h

B(h,o) -sAh,o (d.lc)

4. At the end of the opening time (tt ) the density at the exit section [pU. .t)],
and the area at the exit section [A(h,t )] should be prescribed values. This con-

dition can be expressed as

B(ht up v A (d.ld)

where the constants /A, V have to be

The choice of v however, is govered by the fact that the reeds in the fully open

position must present a somewhat inclined surface facing the ccmibustior. chamber, so

that the 'closing' pressure can build up behind the reeds.

5. As has been pointed out previously an appropriate time variation of the velocity, at

some defined position, e.g. at the entrance (x=-), had to be prescribed. The opening

of the reeds was considered to occur during the maximuu, pressure difference on both

sides of the valve reeds. Thus, it seemed to be appropriate to prescribe this ye-

8
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locity variation to increase from a small initial value towards that of a mximu"
%• during the inflow, This can be expressed

for X =0 as
U,1o,t) = flt) dl)••

Again the an'lysis is given for case I only (i.e. where Y(X I -beX) and the result-

ing expressions for case II __

(i,e. where X(x) = {a2(1-a, )( } 1

are include' at Lhe end of this section.

The arbitrary function of time 7, (t) in equation (c.14) was determined from the con- L'.%

dition that the area at the inlet section be constant for any time (d.la). Substi-

tuting the values x=0 and A-zA in equation (c.14), 7(t) was found to be
0,0

I' I I
-1 Aý 4CO dtA- O4

(d. 3)

The arbitrary constants b and appear in equation (c.14) only as a product term,

and this product could, therefore, be evaluated from condition (d.lb), i.e.

B(o,o) = p A (d.4)
S 0,0

Recalling that B=B(x,t) has been defined to be B,=p.A equation (a.9) and uaing e-

quations (c.13 and c.14), the constant C has been determined from condition (d. lc).

Here the fact that the density at xzh and t-o is only approximately equal to that

of.the stagnation density, has been neglected, since in the numerical evaluations

it has been found that p(h,o) .99 6 0 Thus p(h,o) p was used. Thus
SS

1 A
Ch- In (d.5)

h A
O, 0

For the determination of the unknown time function, -(t), the velocity distribution

at the entrance to the valves, condition (d.le), has been selected as

n nu(o,t) +b b t + *.. + b t Z b t f(t) (d.6)0 n n = o n .- .

9
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and V(t) expreaged from (d.6) and (c.15)

c2 N t )2 ..(t )(d. 7)

+

2c '

Using condition (d.ld) and equations (c.13 and c.14) Va' is calculated

2C
=- (A -1) (d.11)

xI

where

A [c f (t )dt].ti
ch -In u (d.10)

liserting the values of the constants and arbitrary functions of time, as were de-

termined from the boundary conditions, into equations (c.13, c.14 and c.15), and

noting that X is eliminated from the expressions by this process, the final ex-

pressions used for the numerical examples are as follows:

(v-i -I-i -(- e -cx -it- 2  / -i )+--
P c1 L I A1  c I-A• 2""-..

+( (A-l)(e ~-l) + --- e (d.12)
c)

AI- -. '

where pT is given by (d.12) ..

f (t {(Ai 1) eCX + i} (d.14) :''

cuI -- (

Ihe expressions for Case 11 are (d.24)

whee- 1  is give byt) (d2

Oil C L( AT+ 2 a 2 [L •".]) (x-as)2 +-

10



.26 (( t2 t 2:

-G - t' x-a~ + -

aA +2I[ + 2a.-2

UiF. (t.
62 F( t)2x C1  -(I -,Y)

A11 1 A - -Ya + 2a,~: .1

++ +9  Vi P e I

r_.F1i (t)

28:A 1 ia 00p S {p 1 1 } (d. 25)

where p-i is given by (d.24)

: [xt (ad. -2(x-a 26)

U it
6T + 2a,,'

Thus far the flow equations were discussed and solved for the present boundary value

problem. To adapt the reed shapes to the bounding stream-line pattern, it is necessary to

investigate the forces acting upon them. Ihis was done by consideri.og the differential e-

quation of reed motion.

(C) DETEHMINATION OF ThE MASS DISTRIBUTION AND INERTIA PBOPEWIIES OF THE REEDS

The mass distribution of the reeds was determined from the equation expressing the equi-

librium between the pressure forces acting on both sides of the reeds and their elastic and

inertia forces.

The differential equation for the forced vibretion of a reed is

aX2 ý2(~l :

-m Y q(x,t) (e-1

11 ,.
*1,
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Considering the equilibrium of forces over a small element of the reed, for which the

ntmaent of inertia was considered constant, this equation reduces to

+ M q(Xt) (e.la)

1he forcing function q(x,t) consists of known pressure forces on the inflow side, and

of unknown pressure iorces on the combustion chamber side of the reeds. As was stated earlier

in the report, no theoretical or experimental evidence was available to indicate the form of

the pressure variation downstream of the valves, and, therefore, for a prescribed mass distri-

bution of the reed the pressure variation on the combustion chamber side of reeds was calcu-

lated from the following equation.

qc (X,tr-- q-(xt El1 , (e.lb)

For the specific mass distributions chosen in the numerical calculations, the variations

of pressure on the combustion chamber side of the reeds obtained from equation (e.lb) appeared

to be qualitatively correct.

The numerical examples, included as illustrations of the analysis, can now be presented.

(D) ILLUSTRATIVE EXAMPLES

The numerical calculations presented in this paper were guided by consiu.,rations of actual

pulse-jet engines now in existence. Inasmuch as very little reliable experimental data relat-

ed to the air inflow problem exists, the numerical values of the parameters were chosen with a

view towards establishing general trends.

The basic valve dimensions were chosen as closely as possible to those of the 8 inch

NMd:onnell pulse-jet engine.

Preliminary calculations indicated that, for a given valve length, the ratio of inlet

area to exit area at the beginning of the cycle should be relatively small to prevent ex-

cessive transverse acceleration of the reeds at the exit section.

A suitably chosen mass distribution of the reeds then enables them to follow the instan-

taneous bounding streamlines.

In the numerical work it was assiaed that the pulse-jet was operating at sea level con-

12

".• .J '.•''',.. . . . . .... . , .. ,. . . ., .. .. '. . .. .... .-. . .... . .". . . ..... . .. . ' .-.. . . .. . .. . . .... .-. .. .-..-.. .... •,,.,:', •..2 .. •,• .

•""" ' • ', ,\ '"•"." ' . .,• . "'"" .: " , . .°'""" . 7 "" "-" ." . . . . . . . . . . . . . . . .- ' : :•' :• : : :\:'• -• "



ditions with a forward velocity of 500 m,p,h, this velocity was thought to be compatible

with the present applications of the pulse jets. The inflow time as a percentage of the

total cycle time was unknown and was, therefore, chosen from analysis of pressure graphs

as approximately 1/3 of the period, and the opening time of the valves to be 1/6 of the

total period.

The significance of the area ratio -0-LO led to the choice of this paranetcr as a

basic one and, for a valve length of one inch, the following values were used fer the nu-

merical calculations:

Case I
Ah, 0  3:1 & 5:1

C~ase II AAh, 
3.33:1

Following the method described in chapter (c) the values of the arbitrary constants

and the arbitrary time functions were determined from the boundary conditions formulated
the re.

The types of velocity distributions at the entrance of the valves were chosen as shown

in Fig. 2. This figure shows that, for the smaller area ratios (3:1 and 3.33:1) higher in-

take velocities result. The three velocity curves with increasing tangents (Nos. 1, 2, 4)

result in slower opening of the reeds at the beginning of the movement, whereas in the case

Thus, higher reed accelerations result for curves 1, 2 and 4 at the end of the reed movement

than for curve 3. This latter curve (3) also permits greater filling of the combustion cham-

ber during the opening of the valves, as can be seen by a comparison of the areas under the

c u r ve s . ; -

Figures 3 to 6 incl. represent the air intake velocity distribution (u) as a function

of the inflow direction (W) for various times At). A comparison of Figs. 3, 5 and 6 shows

that, for case I (the exponential case), and an area ratio approximately 3:1 (Figs. 3and 5),

the velocity distribution with time is much more regular than for case 11 (the polynomial

case) (Fig. 6). This is probably due to the differei~ce in the original curvature of the
reeds. For convenience dimensionless coordinatesU _ __9 andyO a il d tan = - are included in the

graphs.

Fig. 7 shows the scale drawings of the reeds in their initial and final positions for

both cases and all area ratios.

13
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Figs. 8-11 incl, show the instantaneous streamline shapes for various times (t). A

compaison of these figures shows.

(1) that the exponential cace (1) gives smoother streamlines than the poly-

nomial case (IX),

(2) that the reed movement in the case of the velocity curve with decreas-

ing tangents (curve 3 Fig. 2) yields less acceleration than the other

velocity curves, and

(3) that the reeds for case I and area ratio 5:1 would have to suffer great

bending deflections if they were to follow the instantaneous streamlines.

This would be possible onlv if the reeds were extremely thin and, there-

fore, impractical from the design standpoint.

Figs. 12-15 incl. show the variation of the inflow pressure versus distance along the

direction of flow (X) for various times (t). Again a more advantageous pressure variation

with time is obtained with the velocity distribution of curve (3) Fig. 2.

The values for 'd and ^Y__, needed for the evaluation of eq. (e.lb), giving the
•4

pressure distribution on the combustion chamber side of the reeds, are plotted in Figs. 16-19

iM1. for case I and for ares ratios 3:1 and 5:1 only. Figs. 17 and 19 show that the ac-

celerations and bending of the reeds for the 5:1 area ratio are excessive.

Figs. 20 and 21 show how the variation of the pressures on both sides of the zeeds in non-

dimensional form. The curves show that the combustion chamber pressures are functions of time

and space.

CONCLUSIONS

The analysis shows that for efficient filling of the combustion chamber of pulse-jet IW

engines a large number of tightly spaced reed valves should be employed.

The necessity of handling large amounts of air is still doubted by some investigators.

Present day trend of pulse jet design, however, seems to confirm the opinion expressed in

the introduction, namely, that for i efficient aero-thermodynamic process of the pulse-

jet the 'restriction' of the intake valves should be 7 duced. '-
,.--

No attempt was made in this paper to suggest spatial reduction of the intake restriction.

Work towards this effect has been going on for some time at PIBkL. Here the attempt was

14 O"
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and ~ ~ ~ ~ ~ ~ 6 h iAngoeet h e
"nIade to investigate the possibility of aerodynamic admechnica mrvmn of th red

Numerical work along the lines laid down here, should be continued in order to es-

tablish the effect of the variation of all pessible parameters, thus presenting data for

4 the designer on a broader basis and possibly in a graphical, and, therefore, more useful

form.

I .'ZIA
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LIST OF SYMBUOLS

a,; a, a.; constants in Xj(x) function

A(x,t) area variable, denoting cross sectional area between a pair
of reeds

A0,0  cross sectional area between a pair of reeds at X0O, t=O

AOt cross sectional area between a pair of reeds at X=C, t~t

Ah~ocross sectional area between a pair of reeds at X2,1, t=U"

Ah~t cross sectional area between a pair ot reeds at X=h, t~t

U constant in ý(X) functions

constant in XI(X) function

P(x 0) p(X,t) A(x,t) product of density and area variables

constant iii T(t) function

c constant in XI(X) function

,,A constant

C specific heat at constant pressure
p

c specific heat at constant volume

C 1.4 adiabatic constant

D19D,.,U0, functions of '!(X,t) and p(x,t), defined in eqs. (b.5)

constant

E (lb/in 2 ) modulus of elasticity of reed material

16
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"" h(in) length of the reed

I (in' moment of inertia of the reed cross section

k (in) half distance between a pair of reeds

KI(t);t (t ;K4 (t);K(t) arbitrary functions of time arising in
integrations

"") constant arising in separation of variables

l b sec'
m lb -) mass of the reed per unit length

/t density factor

V area factor

p(x,t) pressure variable

q(x,t) forcing function, resultant pressure on both sides of the
- reed (Ib/in)

qi(x,t) pressure on the intake side of the reed (lb/in)

qc c (x,t) pressure on the combustion chamber side of the reed (lb/in)

p(X,t) density variable

stagnation density

t time variable

tI opening time

'(t) time function

•(t) time function

U(x,t) velocity variable

I.
:.-0

.1
7.1 17

%4
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V P ýO densaity fundtion

w (in) depth of reed valve

x space variable

XWx apace function

V(X) space function

y (X,t) dependent space variable

subsc~ript zero refers to free stream conditions

subscript I and 11 deniote two speci fic cases in the numerical examples.

18



APPENDIX

QUASI ONE-DIMENSIONAL INFLOW BETWEEN REED VALVES

(A) BASIC EQUATIONS DEFINING IHE FLOW

The equation of continuity cin be written:

? p) + B(upA ) V al ,

where A = P.,( t) is the cross sectional area

P = p(X,t) is the density of the gas f
U = U(X,t) is the velocity of the flow (a.2) .;x is the coordinate in tie direction of the flow

t is the time

The Euler equation of flow is:

au 1u i p
- + u- + -- 0 (a .3)
'at Bx p ax

where p = p(x,t) is the pressure of the gas and U, p, x, t are (a.4)

defined in (a.2).

Tihe equation describing adiabatic change of state is:

PP (8.5)

P0

where PO is the free stremn pressure

Po is the free stream density (a.6)

v- is the adiabatic constant
CV

C and C are specific heat at constant pressure and constantp V 
"volume respectively.

19
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Usin eq. (a.5), eq. (a.3) can be written-.
'ýu -u/"-2 _;'

+ U + C 0 (a.7)

where

C, •P.2-0 const.(.)

P0

jlntroducing a new variable (R), being the product of the area (A) and density (p),
i.e.:

B p.A = R(x,t) (a.9)

equation (a.1) can be written:

BFB DR BU
-+ U + - 0 (a.1O)

ý t D X aSX. . o

;B) INTEGRATION OF THE BASIC EQUATIONS

Using the method of variation of parameters, the continuity equation in its rewritten

form (a.1O) can be integrated to yield an expression for the flow-velocity:

u [X, - f dx] (b.1)

where Y,(t) is an arbitrary function of time arising from the integration.

Subatuting U and its derivatives into eq. (a. 7 ), we obtain:

CIP' _2 L 2 K, ±2 d x 1 -2 dx] +S-t -aI
(b.2)S1 1- ( r 1 \?

+ [K, 9- + -- [K- I • dx.:.;
R 3 'a t B t x ,'a.'.
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or, after rearranging:

I2 22 p2B dx].
'at [.2 (x dB hn .1 t

)B txB~ L / (b. 3)

2

+ nv /dx 1

B~L2 -a ati

Differentiating eq. (b.3) with respect to X and arranging terms, we obtain:

~B 2

DJK1ý.-( -2Bdx] + D 2 [1(I - dx 1 +DS (b.4)

where 
.

D ~ I-6R ý2B-

2

y-a2ý 'a[ -y2a 2( LB 2B

ax ax -ax B B t) at

Eqoting thateq (bi 4)ri satt a (yedrtic twe detewrmited)f:to fx n i hc

L L B -D,±/T (b.7aa
Jdxj E

(4.6

21
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Agsimning the solution of eq. (a.9), giving the expression for pA, in the form:

B (x,t) X(x). T(t) XT (b.9)

eq. (b,7a) reduces to:

dXXdd~x dt X _T
- d d ± (b.10)

d JdX d 2 X - 4 - d2 X
dx dx2 kdxf-'

and eq. (c.7b) can be transformed to:

X •6
dX d2X dx 2

d -2 t dX

d2  2dx+

d~ I ) -

( 1 ,.-..,2X C., T 2d C, T -,',
4C, LX• - 2(d dX2 2(l

Differentiating eq. (b.1O) with respect to X and separating variables, this equation

can be written:

Xýd )3 CI d2 X

T± - d: X IdX\2 d 2X x&X )2 b1

wherc X is a constant.

22
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i...:- - -.-- .. .. ..-.. ., _.i

IOChoosing the positive sign of the square root expression, frmn equation (b.12) we have;

1 dT
- -- = X. V'-r kb. 13)

lddt.(b.13)
T dt

and iutegrating, we get:

Equation (b.12) also yields:

dy, dx dx2 dXdX l

dx \djxl dxvJ dx/ d x dx2  xl
2- x (b.15)

(dX 
2 Xk2

dx dx* dx dx2 2 dx/

(C) SPECIAL SOLUTIONS

Two exaWles are worked out in this report.

Cae I. X WX1 (x)"-ec (c.b)

Case 1 XIL Xff W a2 ki'.a±) (x-a 3  }'GaeI a X ()(c.2)

Case C.I. Using equation (c.1) in equation (b.15) above, the denorri-ator, transposed to

the right aide, becomes zero. Equating the numerator (or left hand side) to zero and simplifying,

one obtains;

+ c= 0 (c.3)

d ax

Integrating (c.3), we obtain an expression for ýJ, to be:

- cX

23



%k- and therefore:

• • "2 CX
'1 e (c.4)

Introducing into equation (b.11) the values of X given by expression (c.1), and ,

given by expression (c.4), and still using the symbol TV instead of expression (b.14) for

brevity, equation (b.ll) yields:

T e.(b.14a)
I;o

{dt LC.-2 TCV. -~ (C.5)

where

P (c.6)

Using the method of variation of parameters, equation (c.5), when integrated twice with

respect to x, yielda: ("T"9.. ,..

- P I "8 d c , c• 4-:-Y-1 1 TI di2 T2 "-t

(c.7)

- - K(t)e + (t W

where K,(t) and Y((t) are arbitrary functions of time arising from the integrations. Using

the value for from equation (c.l) and recalling that B was given as:

B(X,t) = .A X.T (b.9)

B can now be expressed!

B =bTlec (c.8)

24. ..-.



I,~.

*and thuis the expression (b. 1) for u becomes

1 1 dT
-CXI*uI . - Kqe - (c,9) e

KbT c dt

Inserting this value of U, and its derivatives into the Euler dynamic equation (a.3), and
int• ating, we get a second expression for ')

- 1  1 T I t dSBI T I X - " "

v-i C~c TIdt' Ti 2 dt
(C.1i0) " --

1 "2C 1 dK, -cx K.+ ~ e_
2T2 b2C, bC1 c dt C1

Cowparing coefficients of equal powers of x in equations (c.7) and (c.lO), we obtain

the following relations between the arbitrary time functions which arose from the integrations:

b

1 dC V•(t} d dT
K2(t) K2 L -- 1.ýJ1.c~l2CI 2 dt T dt ,

KX(t) (t)

C1 
..

or by substituting expression (b.14) for T, and letting X X I•

bo - dt"

2c I

I•2(t) b•Iv- e '--'

2C1c• I 2 •q dt"

K Wt
4,(t) 4

C1

25
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Thuluai tche follmwing expressions are obtained:

., ;A v d,-

4- -1A1 a h. 1e(c.12)S, PI •oA bo e ...

(c. 13)

vy-I

x

uI b- e e (c.14) .,.

-. I c e +"

C, ct 4c 2c4

C,,o', C.I1I. Using the expresi~ion (c.2) for XI{;•"

I e P i

- X.[(x) - {a,2(-al) (x-a,)} (c.2)

Substituting (c.2) in equation (b.15) and integrating:

"all a 2{(a. t-a, ) (x-a, (c.16)
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Tdtj (b. 14b)-

Employing the name method as for case Cd.,1 the fol.lowing expressionis are obtained for
B (X,t), P (x t), A (x, t) and U R(X, t):-

X 1 1  .dt

{-2a,(X-a,,)

1Y- 2 X

*~C dt d

+ ~ ~ (x-n.r] -6X fil. + !! Tx-K6

XE ddt

A{P~ (C. 19)

{-2a, (x-a. }

U 2a' 2 [a(X -a., -2X (X-a3) (c.20)
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D. SOLUTION OF THE BOLNDARY VALUE PROBLEM

For the inflow between hinged valves the initial and boundary conditions to be satisfied

may be noted as:

1. A(o,t) -A =A
0't 0,0

2. B(o,o) psA (w opA
S0,0 s o,t

3. B(h,o) w psA h,° (d.l I[•

4. B(h,t ) I=os p A 0"010,0 •

5. u(o,t) f(t)

where
A =A =2kg,"
0,0 oA O•,.

p is stagnation density

)z and iv are factors less than one (d.2)

f(t) is a given function of time

and t is the opening time of the valves (this value will be used later)
b.o

W (o,t)
Hi-d

A (X"-- (Y,t) 
i

x*0 1

~ A h s-•.• h t) t 0:
th t'

CENTER' "h -

OF MOTION

tof END I.

FIGURE I
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For Case 1., t~he arbitrary fuanction of time X4 (t) is determined fromi condition I (d.l1)

to be;

-1 b 4CvcVT dt 2CO 4c \

From condition 2(d.1) the product of the arbitrary constants b & may be determined:

~( fv~dt 0

bo *A p e(d.4)
I 0,0

where (fV77I dt), denotes the value of the integral at t 0.

From condition 3(d.l) we obtain:

C* In (d.5)

h

To find the unknown time function r ¶r (t), the functiox, f(t) in condition 5(d.1)

has to be chosen. Assumning that f(t) can be approximated by a polynomial, i.e.:

(o,t) NOt z b + bi t + bgt 9 , b t Wd.6)

0 n=o fl

therefore from equation (c.15) T is found to be:

c 2 f( t) 2

~ (d.7)

2c x
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Evaluating the iollowing expressions: 
s'

d* t
fv y tcf 1 (t) }-,'

1+ 
22c X

where (d.8)

t 2 t o n b t n- .f (t) N [ot + b ,- -+ b , -- + .. n - '' -

2 3 nuo n+l-

therefore at t 0

( J -' d t ) " 0

and equation (d,4) reduces to:

bS 0. 0,o)s (d.4a)

I Is

d I 2 o'f (t )f, 2 t ), ' -

wbem. d.9)
.,,L

f,(t) ( [b1 + 2bt + 3b t 2 + I Z nb t-
2 1 2 9n-I nl

Using condition 4 (d.1) the constant a is determined:

2c c{f 1 (t))
I .. n... w..':

denoting ( ) ~ ~(d.10) ' ""A -. C ( f i t ; ) t 
• . ' _

I ch- Ln,"v

3C
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the expression for a becomes:

o• I

Inserting the values of the constants bp (d.4a) and a (d.l1) together with the

arbitrary t~ime functions K6 (t) (d.3) and T d.7) in equations (c.13) (c.14), and (c.15)

we obtain the following expressions to be used in the numerical calculations:

, 2L ,,.*pI

(d.12)

C. ,, A(t

(A - e + PT '

A, A p e A1 ~ p ~(d.13)
I 0,0 S A, PI`

S A -A e(d.14)

Note: When values of b#I d.4a) and aI (d.l1) are substituted in equation (c.13),

(c.14), and (c.15) as shown above, the arbitrary constant X cancelled out of all the

expressions.

For Case 11., the arbitrary function of time K,(t) is determined from condition I (d.l):

- - ~-2X2 t~~V;" d.. •••x dTn

K t) A (2a a. e +f t1-a,
0,0 e a3  -

2Cdi/FTd
"- . CC1 2(Cd .t 5

.11
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From condition 2 (d.1) the arbitrary constant 3may be determined in the form: 'e

0,0 S

'$T Ao, 0% •a~a3J ]r ff~ dtho (d,16)., :=.

where, as in the preceeding case [JV•C- d] t denote the value of the integral at tO,.

trom condition 3(d.1) the arbitrary constant as becomes:

as 2

h,o

Using the expression for U (o,t) as before,

n n
U •o,.t) Z b t = F(t) (dAB)

one obtains:

F(t)2

-/ (d.19)
+ 2X, 5

and denoting:

-t + 2Xja!jF1(t)a 2a~

where F1 t) j- btn dt
n= n

and therefore t=O

(JV(-rdt)o 0

and equation (d.16) reduce& to:

A p [2a 2a3 ' (d.16a)0,0 S 
•:
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dt I,• 2a,2

where (d.21)

d n~b~
dtd 

vL 

0  n'

Using condition 4 (d.l) one can calculate:

"a AT (d.22)

where

[FL, (t

-,"-2am

(d.23)

h-as°

* Inserting the values of the arbitrary constants (d.16a) and a (d.22) together with

the arbitrary time functions KM WAS) and -x (d .1 in equations (c.18), (c.19), and

j(c.20) we obtain the following expressions to be used in the numerical calculations:

(d.24)

+

A2 -(t)] t
F , ( t (A ,.a

+' +

2 a 8 1 (A( +22a 3 A 1

33n
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A2e

[ 77--. 1 ~A P [ -a, ] (d.25) ''

0, 0 o - a , )

{-2(x (d. 6)

U, L' + +2 a

Note: When values of 0 (d.16a), a (d.22) are substituted in equations (d.12), (d.13)

and (d.14), as shown above, the arbitrary cinstantX cancelled out of all the expressions.

E. DETERMINATION OF THE MASS DISTRIBUTION OF THE BEEDS

The differential equation for the forced vibratiou of a reed is

[= q(x,t) (e.1)

where 
C

E is the modulus of elasicity (lb/in2 )

I is the moment of inertia (in 4 ) .

m is the mas of the reed per unit length lbs. (e.2)s

q is the resultant pressure force of pressures acting J ',

an both sides of reed (Ib-in)

Inasmuch as the equilibrium equatinn (e.1) was used for small elements of the reed

over which the mment of inertia was considered constant, equation (e.1) may be written:

EI + in (e.la) -.

In equation (e.la) the right hand side (the forcing function) consists of:

q(x,t) = q.(x,t) - q (x..t) (e.3)
1 CC
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N

where

q, is the pressure force on the inflow side of the reeds (lb/in) 4)

q is the pressure force on the cvilbustion chamber side of the-.

reeda (lb/in) ,

fherefore, equation (e,ls) may be written:

q (x,t) q(x,t) El -_ y (e.lb)cc I -(X4 Bt2". or

where

El - is the bending force per unit length (lb/in)

m is the inertia force per unit length (lb /in)
t2 '.N..

.J. . ..

@ 35
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